博客
关于我
【Lintcode】266. Expect Distance
阅读量:214 次
发布时间:2019-02-28

本文共 955 字,大约阅读时间需要 3 分钟。

题目地址:

有个人困在了一个山洞 A A A,从山洞 A A A出发有两条路,一条路走 x x x千米,会回到山洞 A A A,另一条路走 2 2 2千米,会到山洞 B B B;从山洞 B B B出发也有两条路,一条路走 y y y千米,会到山洞 A A A,另一条路走 z z z千米会到山洞的出口 C C C。问他走出山洞的期望路程。他在山洞选择哪条路走的概率都是 1 2 \frac{1}{2} 21

X X X是从 A A A走到出口的距离, Y Y Y是从 B B B走到出口的距离,由条件期望公式得: E [ X ] = 1 2 ( x + E [ X ] ) + 1 2 ( 2 + E [ Y ] ) E [ Y ] = 1 2 ( y + E [ X ] ) + 1 2 z E[X]=\frac{1}{2}(x+E[X])+\frac{1}{2}(2+E[Y])\\E[Y]=\frac{1}{2}(y+E[X])+\frac{1}{2}z E[X]=21(x+E[X])+21(2+E[Y])E[Y]=21(y+E[X])+21z计算得: E [ X ] = 2 x + y + z + 4 E[X]=2x+y+z+4 E[X]=2x+y+z+4代码如下:

public class Solution {       /**     * @param x: the distance from cave A to cave A.     * @param y: the distance from cave B to cave B.     * @param z: the distance from cave B to exit C.     * @return: return the expect distance to go out of the cave.     */    public int expectDistance(int x, int y, int z) {           // write your code here.        return 2 * x + y + z + 4;    }}

时空复杂度 O ( 1 ) O(1) O(1)

转载地址:http://txcs.baihongyu.com/

你可能感兴趣的文章
no1
查看>>
NO32 网络层次及OSI7层模型--TCP三次握手四次断开--子网划分
查看>>
NOAA(美国海洋和大气管理局)气象数据获取与POI点数据获取
查看>>
NoClassDefFoundError: org/springframework/boot/context/properties/ConfigurationBeanFactoryMetadata
查看>>
node
查看>>
node exporter完整版
查看>>
node HelloWorld入门篇
查看>>
Node JS: < 一> 初识Node JS
查看>>
Node JS: < 二> Node JS例子解析
查看>>
Node Sass does not yet support your current environment: Linux 64-bit with Unsupported runtime(93)解决
查看>>
Node Sass does not yet support your current environment: Windows 64-bit with Unsupported runtime(72)
查看>>
Node 裁切图片的方法
查看>>
node+express+mysql 实现登陆注册
查看>>
Node+Express连接mysql实现增删改查
查看>>
node, nvm, npm,pnpm,以前简单的前端环境为什么越来越复杂
查看>>
Node-RED中Button按钮组件和TextInput文字输入组件的使用
查看>>
vue3+Ts 项目打包时报错 ‘reactive‘is declared but its value is never read.及解决方法
查看>>
Node-RED中Slider滑杆和Numeric数值输入组件的使用
查看>>
Node-RED中Switch开关和Dropdown选择组件的使用
查看>>
Node-RED中使用exec节点实现调用外部exe程序
查看>>